Nuprl Lemma : mul-ipoly-req

p,q:iMonomial() List.  ipolynomial-term(mul-ipoly(p;q)) ≡ ipolynomial-term(p) (*) ipolynomial-term(q)


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 mul-ipoly: mul-ipoly(p;q) ipolynomial-term: ipolynomial-term(p) iMonomial: iMonomial() itermMultiply: left (*) right list: List all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q mul-ipoly: mul-ipoly(p;q) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt cons: [a b] iMonomial: iMonomial() so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q int_nzero: -o top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) and: P ∧ Q itermMultiply: left (*) right int_term_ind: int_term_ind itermConstant: "const" real_term_value: real_term_value(f;t) req_int_terms: t1 ≡ t2 ipolynomial-term: ipolynomial-term(p) subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A label: ...$L... t itermAdd: left (+) right
Lemmas referenced :  iMonomial_wf list-cases valueall-type-has-valueall list_wf list-valueall-type void-valueall-type nil_wf evalall-reduce null_nil_lemma product_subtype_list product-valueall-type int_nzero_wf sorted_wf subtype_rel_self set-valueall-type nequal_wf int-valueall-type cons_wf null_cons_lemma spread_cons_lemma rmul-zero-both req_functionality req_weakening ipolynomial-term_wf real_term_value_wf rmul_wf int-to-real_wf real_wf null_wf3 subtype_rel_list top_wf bool_wf eqtt_to_assert assert_of_null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base btrue_neq_bfalse bfalse_wf and_wf btrue_wf rmul-zero itermAdd_wf imonomial-term_wf subtype_rel_product int_term_wf list_accum_wf eager-accum_wf mul-mono-poly_wf1 add-ipoly_wf1 itermMultiply_wf req_int_terms_functionality req_int_terms_weakening itermMultiply_functionality_wrt_req ipolynomial-term-cons-req rmul-distrib2 req_int_terms_transitivity itermAdd_functionality_wrt_req mul-mono-poly-req list_induction all_wf req_int_terms_wf list_accum_nil_lemma list_accum_cons_lemma req_wf radd_wf uiff_transitivity radd_functionality radd_comm radd-zero-both add-ipoly-req rmul-distrib req_inversion radd-assoc eager-accum-list_accum
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality unionElimination sqequalRule voidEquality independent_isectElimination callbyvalueReduce promote_hyp hypothesis_subsumption productElimination lambdaEquality setEquality intEquality because_Cache independent_functionElimination natural_numberEquality isect_memberEquality voidElimination applyEquality functionExtensionality functionEquality equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation instantiate cumulativity baseClosed rename setElimination applyLambdaEquality independent_pairFormation dependent_set_memberEquality independent_pairEquality productEquality

Latex:
\mforall{}p,q:iMonomial()  List.
    ipolynomial-term(mul-ipoly(p;q))  \mequiv{}  ipolynomial-term(p)  (*)  ipolynomial-term(q)



Date html generated: 2017_10_02-PM-07_20_24
Last ObjectModification: 2017_07_28-AM-07_21_34

Theory : reals


Home Index