Nuprl Lemma : rmul-distrib

[a,b,c:ℝ].  (((a (b c)) ((a b) (a c))) ∧ (((b c) a) ((b a) (c a))))


Proof




Definitions occuring in Statement :  req: y rmul: b radd: b real: uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B implies:  Q
Lemmas referenced :  rmul-distrib1 rmul-distrib2 req_witness rmul_wf radd_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation because_Cache sqequalRule productElimination independent_pairEquality independent_functionElimination isect_memberEquality

Latex:
\mforall{}[a,b,c:\mBbbR{}].    (((a  *  (b  +  c))  =  ((a  *  b)  +  (a  *  c)))  \mwedge{}  (((b  +  c)  *  a)  =  ((b  *  a)  +  (c  *  a))))



Date html generated: 2016_05_18-AM-06_52_30
Last ObjectModification: 2015_12_28-AM-00_30_44

Theory : reals


Home Index