Nuprl Lemma : real_polynomial_null

t:int_term(). t ≡ "0" supposing inl Ax ≤ null(int_term_to_ipoly(t))


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 int_term_to_ipoly: int_term_to_ipoly(t) itermConstant: "const" int_term: int_term() null: null(as) uimplies: supposing a all: x:A. B[x] inl: inl x natural_number: $n sqle: s ≤ t axiom: Ax
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q iPolynomial: iPolynomial() or: P ∨ Q uimplies: supposing a req_int_terms: t1 ≡ t2 prop: cons: [a b] top: Top ipolynomial-term: ipolynomial-term(p) ifthenelse: if then else fi  btrue: tt guard: {T} it: not: ¬A false: False
Lemmas referenced :  real_term_polynomial int_term_to_ipoly_wf iPolynomial_wf iMonomial_wf list-cases null_nil_lemma req_witness real_term_value_wf itermConstant_wf real_wf sqle_wf_base req_int_terms_wf ipolynomial-term_wf nil_wf product_subtype_list null_cons_lemma cons_wf equal_wf int_term_wf req_inversion not-btrue-sqle-bfalse
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename unionElimination sqequalRule isect_memberFormation lambdaEquality functionExtensionality applyEquality intEquality natural_numberEquality independent_functionElimination functionEquality baseClosed promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}t:int\_term().  t  \mequiv{}  "0"  supposing  inl  Ax  \mleq{}  null(int\_term\_to\_ipoly(t))



Date html generated: 2017_10_02-PM-07_20_34
Last ObjectModification: 2017_05_31-PM-03_36_05

Theory : reals


Home Index