Nuprl Lemma : real_polynomial_null
∀t:int_term(). t ≡ "0" supposing inl Ax ≤ null(int_term_to_ipoly(t))
Proof
Definitions occuring in Statement : 
req_int_terms: t1 ≡ t2
, 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
itermConstant: "const"
, 
int_term: int_term()
, 
null: null(as)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
inl: inl x
, 
natural_number: $n
, 
sqle: s ≤ t
, 
axiom: Ax
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iPolynomial: iPolynomial()
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
req_int_terms: t1 ≡ t2
, 
prop: ℙ
, 
cons: [a / b]
, 
top: Top
, 
ipolynomial-term: ipolynomial-term(p)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
guard: {T}
, 
it: ⋅
, 
not: ¬A
, 
false: False
Lemmas referenced : 
real_term_polynomial, 
int_term_to_ipoly_wf, 
iPolynomial_wf, 
iMonomial_wf, 
list-cases, 
null_nil_lemma, 
req_witness, 
real_term_value_wf, 
itermConstant_wf, 
real_wf, 
sqle_wf_base, 
req_int_terms_wf, 
ipolynomial-term_wf, 
nil_wf, 
product_subtype_list, 
null_cons_lemma, 
cons_wf, 
equal_wf, 
int_term_wf, 
req_inversion, 
not-btrue-sqle-bfalse
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
unionElimination, 
sqequalRule, 
isect_memberFormation, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
intEquality, 
natural_numberEquality, 
independent_functionElimination, 
functionEquality, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}t:int\_term().  t  \mequiv{}  "0"  supposing  inl  Ax  \mleq{}  null(int\_term\_to\_ipoly(t))
Date html generated:
2017_10_02-PM-07_20_34
Last ObjectModification:
2017_05_31-PM-03_36_05
Theory : reals
Home
Index