Nuprl Lemma : not-btrue-sqle-bfalse
¬(tt ≤ ff)
Proof
Definitions occuring in Statement : 
bfalse: ff
, 
btrue: tt
, 
not: ¬A
, 
sqle: s ≤ t
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
uimplies: b supposing a
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
sqle_wf_base, 
bottom_diverge, 
int-value-type, 
value-type-has-value, 
has-value-monotonic, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
divergentSqle, 
sqleRule, 
sqleReflexivity, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
intEquality, 
natural_numberEquality, 
independent_functionElimination, 
voidElimination
Latex:
\mneg{}(tt  \mleq{}  ff)
Date html generated:
2016_05_13-PM-03_46_25
Last ObjectModification:
2016_01_14-PM-07_11_09
Theory : call!by!value_2
Home
Index