Nuprl Lemma : has-value-monotonic
∀[a,b:Base].  ((b)↓) supposing ((a ≤ b) and (a)↓)
Proof
Definitions occuring in Statement : 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
is-exception_wf, 
cbv-sqequal0, 
sqle_trans, 
base_wf, 
has-value_wf_base, 
sqle_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
axiomSqleEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
baseClosed, 
baseApply, 
closedConclusion, 
independent_functionElimination, 
divergentSqle, 
sqleRule, 
independent_isectElimination
Latex:
\mforall{}[a,b:Base].    ((b)\mdownarrow{})  supposing  ((a  \mleq{}  b)  and  (a)\mdownarrow{})
Date html generated:
2016_05_13-PM-03_46_24
Last ObjectModification:
2016_01_14-PM-07_11_10
Theory : call!by!value_2
Home
Index