Nuprl Lemma : sqle_trans
∀a,b,c:Base.  ((a ≤ b) 
⇒ (b ≤ c) 
⇒ (a ≤ c))
Proof
Definitions occuring in Statement : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
sqle: s ≤ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
sqle-wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqleTransitivity, 
hypothesis, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :inhabitedIsType
Latex:
\mforall{}a,b,c:Base.    ((a  \mleq{}  b)  {}\mRightarrow{}  (b  \mleq{}  c)  {}\mRightarrow{}  (a  \mleq{}  c))
Date html generated:
2019_06_20-AM-11_19_42
Last ObjectModification:
2018_10_06-AM-09_22_18
Theory : sqequal_1
Home
Index