Nuprl Lemma : sq_stable__subtype_rel
∀[A,B:Type].  SqStable(A ⊆r B)
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
squash_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
dependent_functionElimination, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B:Type].    SqStable(A  \msubseteq{}r  B)
Date html generated:
2016_05_13-PM-03_18_38
Last ObjectModification:
2015_12_26-AM-09_08_24
Theory : subtype_0
Home
Index