Nuprl Lemma : sq_stable__subtype_rel

[A,B:Type].  SqStable(A ⊆B)


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  sq_stable: SqStable(P) uall: [x:A]. B[x] member: t ∈ T implies:  Q subtype_rel: A ⊆B squash: T prop:
Lemmas referenced :  squash_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation lambdaEquality sqequalHypSubstitution imageElimination hypothesisEquality applyEquality hypothesis lemma_by_obid isectElimination thin dependent_functionElimination axiomEquality universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Type].    SqStable(A  \msubseteq{}r  B)



Date html generated: 2016_05_13-PM-03_18_38
Last ObjectModification: 2015_12_26-AM-09_08_24

Theory : subtype_0


Home Index