Nuprl Lemma : trivial-rleq-radd

[a,d:ℝ].  (uiff(a ≤ (a d);r0 ≤ d) ∧ uiff(a ≤ (d a);r0 ≤ d))


Proof




Definitions occuring in Statement :  rleq: x ≤ y radd: b int-to-real: r(n) real: uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B uiff: uiff(P;Q) uimplies: supposing a all: x:A. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B real: prop: squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rleq-implies-rleq int-to-real_wf radd_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 rsub_wf less_than'_wf real_wf nat_plus_wf rleq_wf squash_wf true_wf radd_comm_eq iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality independent_isectElimination dependent_functionElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed universeEquality independent_functionElimination

Latex:
\mforall{}[a,d:\mBbbR{}].    (uiff(a  \mleq{}  (a  +  d);r0  \mleq{}  d)  \mwedge{}  uiff(a  \mleq{}  (d  +  a);r0  \mleq{}  d))



Date html generated: 2017_10_03-AM-08_26_00
Last ObjectModification: 2017_07_28-AM-07_24_05

Theory : reals


Home Index