Nuprl Lemma : rdiv_wf

[x,y:ℝ].  (x/y) ∈ ℝ supposing y ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  rdiv: (x/y) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop:
Lemmas referenced :  rmul_wf rinv_wf2 rneq_wf int-to-real_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:\mBbbR{}].    (x/y)  \mmember{}  \mBbbR{}  supposing  y  \mneq{}  r0



Date html generated: 2016_05_18-AM-07_21_10
Last ObjectModification: 2015_12_28-AM-00_47_14

Theory : reals


Home Index