Nuprl Lemma : rless-int

n,m:ℤ.  (r(n) < r(m) ⇐⇒ n < m)


Proof




Definitions occuring in Statement :  rless: x < y int-to-real: r(n) less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q int:
Definitions unfolded in proof :  all: x:A. B[x] int-to-real: r(n) rless: x < y iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] rev_implies:  Q sq_exists: x:{A| B[x]} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top nat: less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  int_term_value_add_lemma itermAdd_wf le_wf int_term_value_mul_lemma int_term_value_constant_lemma itermMultiply_wf itermConstant_wf mul_preserves_le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties decidable__lt less_than_wf nat_plus_wf sq_exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule independent_pairFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality addEquality multiplyEquality natural_numberEquality setElimination rename hypothesisEquality intEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache dependent_set_memberEquality dependent_set_memberFormation introduction imageMemberEquality baseClosed

Latex:
\mforall{}n,m:\mBbbZ{}.    (r(n)  <  r(m)  \mLeftarrow{}{}\mRightarrow{}  n  <  m)



Date html generated: 2016_05_18-AM-07_05_03
Last ObjectModification: 2016_01_17-AM-01_50_26

Theory : reals


Home Index