Nuprl Lemma : ss-eq_weakening

ss:SeparationSpace. ∀x,y:Point.  ((x y ∈ Point)  x ≡ y)


Proof




Definitions occuring in Statement :  ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  false: False and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True squash: T uall: [x:A]. B[x] prop: member: t ∈ T not: ¬A ss-eq: x ≡ y implies:  Q all: x:A. B[x]
Lemmas referenced :  ss-sep-irrefl iff_weakening_equal true_wf squash_wf separation-space_wf ss-point_wf equal_wf ss-sep_wf
Rules used in proof :  voidElimination independent_functionElimination productElimination independent_isectElimination universeEquality baseClosed imageMemberEquality sqequalRule natural_numberEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y:Point.    ((x  =  y)  {}\mRightarrow{}  x  \mequiv{}  y)



Date html generated: 2016_11_08-AM-09_11_04
Last ObjectModification: 2016_10_31-AM-11_09_31

Theory : inner!product!spaces


Home Index