Nuprl Lemma : ss-eq_weakening
∀ss:SeparationSpace. ∀x,y:Point.  ((x = y ∈ Point) ⇒ x ≡ y)
Proof
Definitions occuring in Statement : 
ss-eq: x ≡ y, 
ss-point: Point, 
separation-space: SeparationSpace, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
false: False, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
true: True, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
not: ¬A, 
ss-eq: x ≡ y, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
ss-sep-irrefl, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
separation-space_wf, 
ss-point_wf, 
equal_wf, 
ss-sep_wf
Rules used in proof : 
voidElimination, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y:Point.    ((x  =  y)  {}\mRightarrow{}  x  \mequiv{}  y)
Date html generated:
2016_11_08-AM-09_11_04
Last ObjectModification:
2016_10_31-AM-11_09_31
Theory : inner!product!spaces
Home
Index