Nuprl Lemma : rmax_ub

[x,y,z:ℝ].  z ≤ rmax(x;y) supposing (z ≤ x) ∨ (z ≤ y)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmax: rmax(x;y) real: uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a or: P ∨ Q and: P ∧ Q guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop:
Lemmas referenced :  rleq-rmax rleq_transitivity rmax_wf less_than'_wf rsub_wf real_wf nat_plus_wf or_wf rleq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality unionElimination productElimination hypothesis independent_isectElimination sqequalRule lambdaEquality dependent_functionElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination

Latex:
\mforall{}[x,y,z:\mBbbR{}].    z  \mleq{}  rmax(x;y)  supposing  (z  \mleq{}  x)  \mvee{}  (z  \mleq{}  y)



Date html generated: 2016_05_18-AM-07_16_02
Last ObjectModification: 2015_12_28-AM-00_43_58

Theory : reals


Home Index