Nuprl Lemma : rccint-icompact

a,b:ℝ.  (a ≤ ⇐⇒ icompact([a, b]))


Proof




Definitions occuring in Statement :  icompact: icompact(I) rccint: [l, u] rleq: x ≤ y real: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  rccint: [l, u] icompact: icompact(I) i-finite: i-finite(I) i-closed: i-closed(I) i-nonvoid: i-nonvoid(I) isl: isl(x) outl: outl(x) bnot: ¬bb ifthenelse: if then else fi  btrue: tt assert: b bor: p ∨bq bfalse: ff i-member: r ∈ I all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: true: True rev_implies:  Q guard: {T} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  rleq_weakening_equal and_wf rleq_wf rleq_transitivity exists_wf real_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation dependent_pairFormation hypothesisEquality hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination natural_numberEquality productElimination lambdaEquality

Latex:
\mforall{}a,b:\mBbbR{}.    (a  \mleq{}  b  \mLeftarrow{}{}\mRightarrow{}  icompact([a,  b]))



Date html generated: 2016_05_18-AM-08_45_38
Last ObjectModification: 2015_12_27-PM-11_50_12

Theory : reals


Home Index