Nuprl Lemma : rccint-icompact
∀a,b:ℝ.  (a ≤ b 
⇐⇒ icompact([a, b]))
Proof
Definitions occuring in Statement : 
icompact: icompact(I)
, 
rccint: [l, u]
, 
rleq: x ≤ y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
rccint: [l, u]
, 
icompact: icompact(I)
, 
i-finite: i-finite(I)
, 
i-closed: i-closed(I)
, 
i-nonvoid: i-nonvoid(I)
, 
isl: isl(x)
, 
outl: outl(x)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
assert: ↑b
, 
bor: p ∨bq
, 
bfalse: ff
, 
i-member: r ∈ I
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
rleq_weakening_equal, 
and_wf, 
rleq_wf, 
rleq_transitivity, 
exists_wf, 
real_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
dependent_pairFormation, 
hypothesisEquality, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
lambdaEquality
Latex:
\mforall{}a,b:\mBbbR{}.    (a  \mleq{}  b  \mLeftarrow{}{}\mRightarrow{}  icompact([a,  b]))
Date html generated:
2016_05_18-AM-08_45_38
Last ObjectModification:
2015_12_27-PM-11_50_12
Theory : reals
Home
Index