Nuprl Lemma : ss-open_wf

[X:SeparationSpace]. (Open(X) ∈ 𝕌')


Proof




Definitions occuring in Statement :  ss-open: Open(X) separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-open: Open(X) prop:
Lemmas referenced :  ss-basic_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality cumulativity extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:SeparationSpace].  (Open(X)  \mmember{}  \mBbbU{}')



Date html generated: 2020_05_20-PM-01_21_58
Last ObjectModification: 2018_07_06-PM-01_51_44

Theory : intuitionistic!topology


Home Index