Nuprl Lemma : ss-open_wf
∀[X:SeparationSpace]. (Open(X) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
ss-open: Open(X)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ss-open: Open(X)
, 
prop: ℙ
Lemmas referenced : 
ss-basic_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
cumulativity, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:SeparationSpace].  (Open(X)  \mmember{}  \mBbbU{}')
Date html generated:
2020_05_20-PM-01_21_58
Last ObjectModification:
2018_07_06-PM-01_51_44
Theory : intuitionistic!topology
Home
Index