Nuprl Lemma : ss-mem-open_wf

[X:SeparationSpace]. ∀[O:Open(X)]. ∀[x:Point(X)].  (x ∈ O ∈ ℙ)


Proof




Definitions occuring in Statement :  ss-mem-open: x ∈ O ss-open: Open(X) ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-mem-open: x ∈ O so_lambda: λ2x.t[x] prop: and: P ∧ Q ss-open: Open(X) subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  exists_wf ss-basic_wf subtype_rel_self ss-mem-basic_wf ss-point_wf ss-open_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality productEquality applyEquality instantiate universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[O:Open(X)].  \mforall{}[x:Point(X)].    (x  \mmember{}  O  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-PM-01_22_03
Last ObjectModification: 2018_07_06-PM-01_55_22

Theory : intuitionistic!topology


Home Index