Nuprl Lemma : ss-open-or_wf

[X:SeparationSpace]. ∀[T:Type]. ∀[F:T ⟶ Open(X)].  (⋃x:T.F[x] ∈ Open(X))


Proof




Definitions occuring in Statement :  ss-open-or: x:T.F[x] ss-open: Open(X) separation-space: SeparationSpace uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-open-or: x:T.F[x] ss-open: Open(X) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop:
Lemmas referenced :  exists_wf subtype_rel_self ss-basic_wf ss-open_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate functionEquality cumulativity universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[T:Type].  \mforall{}[F:T  {}\mrightarrow{}  Open(X)].    (\mcup{}x:T.F[x]  \mmember{}  Open(X))



Date html generated: 2020_05_20-PM-01_22_42
Last ObjectModification: 2018_07_06-PM-05_00_08

Theory : intuitionistic!topology


Home Index