Nuprl Lemma : path-comp-union

[A,B:SeparationSpace].  (path-comp-property(A)  path-comp-property(B)  path-comp-property(A B))


Proof




Definitions occuring in Statement :  path-comp-property: path-comp-property(X) union-ss: ss1 ss2 separation-space: SeparationSpace uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q path-comp-property: path-comp-property(X) all: x:A. B[x] member: t ∈ T or: P ∨ Q and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: guard: {T} true: True record-select: r.x ss-sep: y union-sep: union-sep(ss1;ss2;p;q) ss-eq: x ≡ y assert: b outl: outl(x) isl: isl(x) btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y mk-ss: Point=P #=Sep cotrans=C ss-point: Point(ss) union-ss: ss1 ss2 uimplies: supposing a top: Top path-at: p@t exists: x:A. B[x] squash: T less_than: a < b rneq: x ≠ y path-comp-rel: path-comp-rel(X;f;g;h) rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rccint: [l, u] i-member: r ∈ I subtype_rel: A ⊆B satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) nat_plus: + isr: isr(x) outr: outr(x)
Lemmas referenced :  path-in-union ss-eq_wf union-ss_wf path-at_wf member_rccint_lemma rleq-int istype-false int-to-real_wf rleq_wf ss-point_wf path-ss_wf path-comp-property_wf separation-space_wf istype-true rec_select_update_lemma rleq_weakening_equal istype-void path-comp-rel_wf unit_ss_point_lemma unit-ss_wf real_wf path-ss-point rless_wf rless-int rdiv_wf rccint_wf i-member_wf rinv_wf2 itermConstant_wf itermVar_wf itermMultiply_wf itermSubtract_wf rmul_preserves_rleq2 rmul-nonneg-case1 rmul_wf rleq_functionality req_transitivity rmul-rinv req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma subtype_rel_self rleq_transitivity istype-less_than int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma intformless_wf intformnot_wf full-omega-unsat decidable__lt rleq-int-fractions3 rleq-implies-rleq rsub_wf rmul-int rleq-int-fractions2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality dependent_functionElimination because_Cache unionElimination universeIsType hypothesis sqequalRule Error :memTop,  natural_numberEquality productElimination independent_functionElimination independent_pairFormation dependent_set_memberEquality_alt productIsType inhabitedIsType equalitySymmetry equalityTransitivity equalityIstype functionIsTypeImplies lambdaEquality_alt independent_isectElimination voidElimination isect_memberEquality_alt dependent_pairFormation_alt applyEquality setIsType functionIsType rename setElimination inlEquality_alt baseClosed imageMemberEquality inrFormation_alt closedConclusion promote_hyp approximateComputation int_eqEquality setEquality inrEquality_alt

Latex:
\mforall{}[A,B:SeparationSpace].
    (path-comp-property(A)  {}\mRightarrow{}  path-comp-property(B)  {}\mRightarrow{}  path-comp-property(A  +  B))



Date html generated: 2020_05_20-PM-01_21_30
Last ObjectModification: 2020_02_08-AM-11_39_59

Theory : intuitionistic!topology


Home Index