Nuprl Lemma : union-ss_wf

[ss1,ss2:SeparationSpace].  (ss1 ss2 ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  union-ss: ss1 ss2 separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T union-ss: ss1 ss2 all: x:A. B[x] not: ¬A implies:  Q false: False union-sep: union-sep(ss1;ss2;p;q) prop: subtype_rel: A ⊆B or: P ∨ Q true: True separation-space: SeparationSpace record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt ss-sep: y ss-point: Point(ss) uimplies: supposing a
Lemmas referenced :  mk-ss_wf ss-point_wf union-sep_wf ss-sep-irrefl subtype_rel_self istype-void separation-space_wf istype-true ss-sep_wf not_wf subtype_rel_function
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality hypothesis dependent_set_memberEquality_alt lambdaEquality_alt inhabitedIsType unionIsType universeIsType sqequalRule lambdaFormation_alt unionElimination independent_functionElimination voidElimination because_Cache functionIsType applyEquality instantiate universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inlEquality_alt closedConclusion natural_numberEquality inrEquality_alt dependentIntersectionElimination dependentIntersectionEqElimination tokenEquality setEquality functionEquality cumulativity functionExtensionality independent_isectElimination

Latex:
\mforall{}[ss1,ss2:SeparationSpace].    (ss1  +  ss2  \mmember{}  SeparationSpace)



Date html generated: 2019_10_31-AM-07_27_03
Last ObjectModification: 2019_09_19-PM-04_11_40

Theory : constructive!algebra


Home Index