Nuprl Lemma : ss-sep-irrefl

[ss:SeparationSpace]. ∀[x:Point(ss)].  x)


Proof




Definitions occuring in Statement :  ss-sep: y ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False separation-space: SeparationSpace record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x] or: P ∨ Q ss-sep: y squash: T ss-point: Point(ss) guard: {T}
Lemmas referenced :  subtype_rel_self record-select_wf top_wf istype-atom not_wf all_wf or_wf ss-sep_wf ss-point_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt thin sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination hypothesis applyEquality tokenEquality instantiate extract_by_obid isectElimination universeEquality setEquality functionEquality cumulativity lambdaEquality_alt equalityTransitivity equalitySymmetry hypothesisEquality because_Cache applyLambdaEquality setElimination rename inhabitedIsType universeIsType imageMemberEquality baseClosed imageElimination independent_functionElimination voidElimination dependent_functionElimination functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[x:Point(ss)].    (\mneg{}x  \#  x)



Date html generated: 2019_10_31-AM-07_26_18
Last ObjectModification: 2019_09_19-PM-04_24_57

Theory : constructive!algebra


Home Index