Nuprl Lemma : record-select_wf
∀[T:Atom ⟶ 𝕌']. ∀[z:Atom]. ∀[r:record(x.T[x])].  (r.z ∈ T[z])
Proof
Definitions occuring in Statement : 
record-select: r.x
, 
record: record(x.T[x])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
record: record(x.T[x])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
record-select: r.x
, 
so_apply: x[s]
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
atomEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[z:Atom].  \mforall{}[r:record(x.T[x])].    (r.z  \mmember{}  T[z])
Date html generated:
2016_05_15-PM-06_40_15
Last ObjectModification:
2015_12_27-AM-11_52_52
Theory : general
Home
Index