Nuprl Lemma : record-select_wf

[T:Atom ⟶ 𝕌']. ∀[z:Atom]. ∀[r:record(x.T[x])].  (r.z ∈ T[z])


Proof




Definitions occuring in Statement :  record-select: r.x record: record(x.T[x]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  record: record(x.T[x]) uall: [x:A]. B[x] member: t ∈ T record-select: r.x so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity atomEquality isect_memberEquality isectElimination thin because_Cache universeEquality

Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[z:Atom].  \mforall{}[r:record(x.T[x])].    (r.z  \mmember{}  T[z])



Date html generated: 2016_05_15-PM-06_40_15
Last ObjectModification: 2015_12_27-AM-11_52_52

Theory : general


Home Index