Nuprl Lemma : union-sep_wf

[ss1,ss2:SeparationSpace]. ∀[p,q:Point(ss1) Point(ss2)].  (union-sep(ss1;ss2;p;q) ∈ ℙ)


Proof




Definitions occuring in Statement :  union-sep: union-sep(ss1;ss2;p;q) ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] prop: member: t ∈ T union: left right
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T union-sep: union-sep(ss1;ss2;p;q) all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  ss-sep_wf true_wf equal_wf ss-point_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesisEquality equalityTransitivity hypothesis equalitySymmetry thin because_Cache lambdaFormation unionElimination extract_by_obid sqequalHypSubstitution isectElimination dependent_functionElimination independent_functionElimination axiomEquality unionEquality isect_memberEquality

Latex:
\mforall{}[ss1,ss2:SeparationSpace].  \mforall{}[p,q:Point(ss1)  +  Point(ss2)].    (union-sep(ss1;ss2;p;q)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_31-AM-07_26_57
Last ObjectModification: 2019_03_19-PM-03_41_40

Theory : constructive!algebra


Home Index