Nuprl Lemma : union-sep_wf
∀[ss1,ss2:SeparationSpace]. ∀[p,q:Point(ss1) + Point(ss2)].  (union-sep(ss1;ss2;p;q) ∈ ℙ)
Proof
Definitions occuring in Statement : 
union-sep: union-sep(ss1;ss2;p;q)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
union: left + right
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union-sep: union-sep(ss1;ss2;p;q)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
ss-sep_wf, 
true_wf, 
equal_wf, 
ss-point_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
because_Cache, 
lambdaFormation, 
unionElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
unionEquality, 
isect_memberEquality
Latex:
\mforall{}[ss1,ss2:SeparationSpace].  \mforall{}[p,q:Point(ss1)  +  Point(ss2)].    (union-sep(ss1;ss2;p;q)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_31-AM-07_26_57
Last ObjectModification:
2019_03_19-PM-03_41_40
Theory : constructive!algebra
Home
Index