Nuprl Lemma : unit-ss_wf
𝕀 ∈ SeparationSpace
Proof
Definitions occuring in Statement : 
unit-ss: 𝕀, 
separation-space: SeparationSpace, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s], 
real: ℝ, 
btrue: tt, 
bfalse: ff, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
record-update: r[x := v], 
mk-ss: Point=P #=Sep symm=Sym cotrans=C, 
real-ss: ℝ, 
record-select: r.x, 
ss-point: Point(ss), 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
all: ∀x:A. B[x], 
unit-ss: 𝕀
Lemmas referenced : 
ss-point_wf, 
real_wf, 
subtype_rel_self, 
int-to-real_wf, 
rleq_wf, 
real-ss_wf, 
set-ss_wf, 
member_rccint_lemma
Rules used in proof : 
because_Cache, 
applyEquality, 
hypothesisEquality, 
natural_numberEquality, 
productEquality, 
lambdaEquality, 
isectElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mBbbI{}  \mmember{}  SeparationSpace
Date html generated:
2018_07_29-AM-10_11_26
Last ObjectModification:
2018_06_28-PM-05_34_40
Theory : constructive!algebra
Home
Index