Nuprl Lemma : unit-ss_wf

𝕀 ∈ SeparationSpace


Proof




Definitions occuring in Statement :  unit-ss: 𝕀 separation-space: SeparationSpace member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] real: btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-ss: Point=P #=Sep symm=Sym cotrans=C real-ss: record-select: r.x ss-point: Point(ss) subtype_rel: A ⊆B and: P ∧ Q prop: so_lambda: λ2x.t[x] uall: [x:A]. B[x] top: Top member: t ∈ T all: x:A. B[x] unit-ss: 𝕀
Lemmas referenced :  ss-point_wf real_wf subtype_rel_self int-to-real_wf rleq_wf real-ss_wf set-ss_wf member_rccint_lemma
Rules used in proof :  because_Cache applyEquality hypothesisEquality natural_numberEquality productEquality lambdaEquality isectElimination hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mBbbI{}  \mmember{}  SeparationSpace



Date html generated: 2018_07_29-AM-10_11_26
Last ObjectModification: 2018_06_28-PM-05_34_40

Theory : constructive!algebra


Home Index