Nuprl Lemma : path-in-union

[A,B:SeparationSpace].
  ∀f:Point(Path(A B))
    (((∀x:{x:ℝ(r0 ≤ x) ∧ (x ≤ r1)} (↑isl(f@x))) ∧ x.outl(f x) ∈ Point(Path(A))))
    ∨ ((∀x:{x:ℝ(r0 ≤ x) ∧ (x ≤ r1)} (↑isr(f@x))) ∧ x.outr(f x) ∈ Point(Path(B)))))


Proof




Definitions occuring in Statement :  path-at: p@t path-ss: Path(X) union-ss: ss1 ss2 ss-point: Point(ss) separation-space: SeparationSpace rleq: x ≤ y int-to-real: r(n) real: outr: outr(x) outl: outl(x) assert: b isr: isr(x) isl: isl(x) uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T implies:  Q union-ss: ss1 ss2 ss-point: Point(ss) mk-ss: Point=P #=Sep cotrans=C eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt isl: isl(x) and: P ∧ Q prop: isr: isr(x) iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] guard: {T} uimplies: supposing a true: True ss-sep: y union-sep: union-sep(ss1;ss2;p;q) ss-eq: x ≡ y top: Top assert: b bnot: ¬bb exists: x:A. B[x] sq_type: SQType(T) or: P ∨ Q uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 cand: c∧ B outl: outl(x) path-at: p@t outr: outr(x)
Lemmas referenced :  path-at_wf union-ss_wf member_rccint_lemma rec_select_update_lemma btrue_wf bfalse_wf real_wf rleq_wf int-to-real_wf extensional-interval-to-bool-constant rleq-int istype-false i-member_wf rccint_wf path-at_functionality req_wf ss-point_wf path-ss_wf separation-space_wf ss-eq_wf istype-void assert-bnot bool_cases_sqequal eqff_to_assert istype-assert assert_witness bool_subtype_base bool_wf subtype_base_sq eqtt_to_assert rleq_weakening_equal istype-true path-ss-point unit_ss_point_lemma unit-ss_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule dependent_functionElimination Error :memTop,  inhabitedIsType unionElimination equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination setIsType universeIsType productIsType natural_numberEquality because_Cache productElimination independent_pairFormation dependent_set_memberEquality_alt lambdaEquality_alt independent_isectElimination setElimination rename voidElimination isect_memberEquality_alt inrFormation_alt promote_hyp dependent_pairFormation_alt functionIsType cumulativity instantiate inlFormation_alt equalityElimination applyEquality

Latex:
\mforall{}[A,B:SeparationSpace].
    \mforall{}f:Point(Path(A  +  B))
        (((\mforall{}x:\{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\}  .  (\muparrow{}isl(f@x)))  \mwedge{}  (\mlambda{}x.outl(f  x)  \mmember{}  Point(Path(A))))
        \mvee{}  ((\mforall{}x:\{x:\mBbbR{}|  (r0  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r1)\}  .  (\muparrow{}isr(f@x)))  \mwedge{}  (\mlambda{}x.outr(f  x)  \mmember{}  Point(Path(B)))))



Date html generated: 2020_05_20-PM-01_21_15
Last ObjectModification: 2020_02_08-AM-11_40_36

Theory : intuitionistic!topology


Home Index