Nuprl Lemma : rleq-int-fractions2
∀[a,b:ℤ]. ∀[d:ℕ+].  uiff(r(a) ≤ (r(b)/r(d));(a * d) ≤ b)
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rleq: x ≤ y, 
int-to-real: r(n), 
nat_plus: ℕ+, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
multiply: n * m, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
nat_plus: ℕ+, 
prop: ℙ, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
subtype_rel: A ⊆r B, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rmul_preserves_rleq, 
rmul-rdiv-cancel2, 
req_weakening, 
rmul-int, 
rleq_functionality, 
uiff_transitivity, 
rmul_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
rleq-int, 
rmul_preserves_rleq2, 
le_wf, 
nat_plus_wf, 
rsub_wf, 
rless_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
rdiv_wf, 
int-to-real_wf, 
rleq_wf, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
multiplyEquality, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
inrFormation, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
minusEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[d:\mBbbN{}\msupplus{}].    uiff(r(a)  \mleq{}  (r(b)/r(d));(a  *  d)  \mleq{}  b)
Date html generated:
2016_05_18-AM-07_27_26
Last ObjectModification:
2016_01_17-AM-01_58_44
Theory : reals
Home
Index