Nuprl Lemma : rmul_preserves_rleq
∀[x,y,z:ℝ].  uiff(x ≤ z;(x * y) ≤ (z * y)) supposing r0 < y
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rless: x < y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
guard: {T}
, 
rneq: x ≠ y
, 
or: P ∨ Q
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
rmul_wf, 
real_wf, 
nat_plus_wf, 
rleq_wf, 
rless_wf, 
int-to-real_wf, 
rmul_functionality_wrt_rleq, 
rleq_weakening_rless, 
rinv_wf2, 
rinv-positive, 
rleq_functionality, 
req_transitivity, 
req_inversion, 
rmul-assoc, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
rmul-one-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
independent_functionElimination, 
inrFormation
Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff(x  \mleq{}  z;(x  *  y)  \mleq{}  (z  *  y))  supposing  r0  <  y
Date html generated:
2016_05_18-AM-07_12_28
Last ObjectModification:
2015_12_28-AM-00_40_50
Theory : reals
Home
Index