Nuprl Lemma : rmul_preserves_rleq

[x,y,z:ℝ].  uiff(x ≤ z;(x y) ≤ (z y)) supposing r0 < y


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y rmul: b int-to-real: r(n) real: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: guard: {T} rneq: x ≠ y or: P ∨ Q
Lemmas referenced :  less_than'_wf rsub_wf rmul_wf real_wf nat_plus_wf rleq_wf rless_wf int-to-real_wf rmul_functionality_wrt_rleq rleq_weakening_rless rinv_wf2 rinv-positive rleq_functionality req_transitivity req_inversion rmul-assoc rmul_functionality req_weakening rmul-rinv rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache lemma_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination isect_memberEquality independent_isectElimination independent_functionElimination inrFormation

Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff(x  \mleq{}  z;(x  *  y)  \mleq{}  (z  *  y))  supposing  r0  <  y



Date html generated: 2016_05_18-AM-07_12_28
Last ObjectModification: 2015_12_28-AM-00_40_50

Theory : reals


Home Index