Nuprl Lemma : rmul-assoc

[a,b,c:ℝ].  ((a c) ((a b) c))


Proof




Definitions occuring in Statement :  req: y rmul: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T guard: {T} uimplies: supposing a implies:  Q
Lemmas referenced :  rmul_assoc req_inversion rmul_wf req_witness real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination independent_functionElimination sqequalRule isect_memberEquality because_Cache

Latex:
\mforall{}[a,b,c:\mBbbR{}].    ((a  *  b  *  c)  =  ((a  *  b)  *  c))



Date html generated: 2016_05_18-AM-06_51_28
Last ObjectModification: 2015_12_28-AM-00_29_54

Theory : reals


Home Index