Nuprl Lemma : rmul-assoc
∀[a,b,c:ℝ].  ((a * b * c) = ((a * b) * c))
Proof
Definitions occuring in Statement : 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
Lemmas referenced : 
rmul_assoc, 
req_inversion, 
rmul_wf, 
req_witness, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b,c:\mBbbR{}].    ((a  *  b  *  c)  =  ((a  *  b)  *  c))
Date html generated:
2016_05_18-AM-06_51_28
Last ObjectModification:
2015_12_28-AM-00_29_54
Theory : reals
Home
Index