Nuprl Lemma : rmul_assoc

[a,b,c:ℝ].  (((a b) c) (a c))


Proof




Definitions occuring in Statement :  req: y rmul: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B real: implies:  Q iff: ⇐⇒ Q rev_implies:  Q squash: T prop: true: True guard: {T}
Lemmas referenced :  bdd-diff_weakening reg-seq-mul_functionality_wrt_bdd-diff reg-seq-mul-assoc real_wf req_witness iff_weakening_equal reg-seq-mul-comm nat_plus_wf true_wf squash_wf bdd-diff_wf rmul-bdd-diff-reg-seq-mul reg-seq-mul_wf bdd-diff_functionality rmul_wf req-iff-bdd-diff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination dependent_functionElimination applyEquality lambdaEquality setElimination rename because_Cache sqequalRule independent_functionElimination imageElimination equalityTransitivity equalitySymmetry functionEquality intEquality natural_numberEquality imageMemberEquality baseClosed universeEquality isect_memberEquality

Latex:
\mforall{}[a,b,c:\mBbbR{}].    (((a  *  b)  *  c)  =  (a  *  b  *  c))



Date html generated: 2016_05_18-AM-06_51_25
Last ObjectModification: 2016_01_17-AM-01_46_15

Theory : reals


Home Index