Nuprl Lemma : rmul_assoc
∀[a,b,c:ℝ].  (((a * b) * c) = (a * b * c))
Proof
Definitions occuring in Statement : 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
Lemmas referenced : 
bdd-diff_weakening, 
reg-seq-mul_functionality_wrt_bdd-diff, 
reg-seq-mul-assoc, 
real_wf, 
req_witness, 
iff_weakening_equal, 
reg-seq-mul-comm, 
nat_plus_wf, 
true_wf, 
squash_wf, 
bdd-diff_wf, 
rmul-bdd-diff-reg-seq-mul, 
reg-seq-mul_wf, 
bdd-diff_functionality, 
rmul_wf, 
req-iff-bdd-diff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[a,b,c:\mBbbR{}].    (((a  *  b)  *  c)  =  (a  *  b  *  c))
Date html generated:
2016_05_18-AM-06_51_25
Last ObjectModification:
2016_01_17-AM-01_46_15
Theory : reals
Home
Index