Nuprl Lemma : reg-seq-mul-assoc

x,y,z:ℝ.  bdd-diff(reg-seq-mul(reg-seq-mul(x;y);z);reg-seq-mul(x;reg-seq-mul(y;z)))


Proof




Definitions occuring in Statement :  reg-seq-mul: reg-seq-mul(x;y) real: bdd-diff: bdd-diff(f;g) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] reg-seq-mul: reg-seq-mul(x;y) bdd-diff: bdd-diff(f;g) exists: x:A. B[x] member: t ∈ T nat: uall: [x:A]. B[x] subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: int_upper: {i...} so_lambda: λ2x.t[x] real: nat_plus: + so_apply: x[s] uimplies: supposing a guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nequal: a ≠ b ∈  squash: T true: True iff: ⇐⇒ Q rev_implies:  Q int_nzero: -o sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) subtract: m sq_type: SQType(T) less_than: a < b cand: c∧ B
Lemmas referenced :  imax_wf canonical-bound_wf add_nat_wf multiply_nat_wf false_wf le_wf imax_nat int_upper_wf all_wf nat_plus_wf absval_wf nat_wf subtype_rel_set int_upper_subtype_nat nat_properties decidable__le add-is-int-iff multiply-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf mul_cancel_in_le subtract_wf nat_plus_properties intformless_wf int_formula_prop_less_lemma absval_nat_plus equal-wf-T-base squash_wf true_wf absval_mul iff_weakening_equal equal-wf-base real_wf nequal_wf left_mul_subtract_distrib div_rem_sum2 rem_bounds_absval int_subtype_base less_than_wf set_wf sq_stable__less_than le_functionality le_weakening add_functionality_wrt_le int-triangle-inequality minus-add minus-minus add-associates minus-one-mul mul-commutes add-swap add-commutes mul_assoc subtype_base_sq decidable__equal_int mul-distributes-right mul-associates mul-distributes mul-swap one-mul add-mul-special zero-mul zero-add itermMinus_wf int_term_value_minus_lemma add_functionality_wrt_eq absval_sym multiply_functionality_wrt_le sq_stable__le nat_plus_subtype_nat absval_pos imax_ub int_upper_properties mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule dependent_pairFormation dependent_set_memberEquality addEquality multiplyEquality natural_numberEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache independent_pairFormation lambdaEquality setElimination rename setEquality independent_isectElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination divideEquality imageElimination imageMemberEquality universeEquality remainderEquality minusEquality instantiate cumulativity inlFormation inrFormation

Latex:
\mforall{}x,y,z:\mBbbR{}.    bdd-diff(reg-seq-mul(reg-seq-mul(x;y);z);reg-seq-mul(x;reg-seq-mul(y;z)))



Date html generated: 2017_10_02-PM-07_14_56
Last ObjectModification: 2017_07_28-AM-07_20_17

Theory : reals


Home Index