Nuprl Lemma : rmul_functionality_wrt_rleq
∀[x,y,z:ℝ].  ((x * y) ≤ (z * y)) supposing ((r0 ≤ y) and (x ≤ z))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
rleq: x ≤ y, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
real: ℝ, 
prop: ℙ, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
top: Top, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rnonneg-rmul, 
rsub_wf, 
int-to-real_wf, 
less_than'_wf, 
rmul_wf, 
real_wf, 
nat_plus_wf, 
rnonneg_wf, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rnonneg_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
computeAll, 
int_eqEquality, 
intEquality, 
voidEquality, 
independent_isectElimination
Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((x  *  y)  \mleq{}  (z  *  y))  supposing  ((r0  \mleq{}  y)  and  (x  \mleq{}  z))
Date html generated:
2017_10_03-AM-08_26_19
Last ObjectModification:
2017_07_28-AM-07_24_15
Theory : reals
Home
Index