Nuprl Lemma : path-comp-rel_wf

[X:SeparationSpace]. ∀[f,g,h:Point(Path(X))].  (path-comp-rel(X;f;g;h) ∈ ℙ)


Proof




Definitions occuring in Statement :  path-comp-rel: path-comp-rel(X;f;g;h) path-ss: Path(X) ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T path-comp-rel: path-comp-rel(X;f;g;h) all: x:A. B[x] top: Top prop: and: P ∧ Q uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] cand: c∧ B nat_plus: + uiff: uiff(P;Q) le: A ≤ B false: False not: ¬A so_apply: x[s] rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  member_rccint_lemma all_wf real_wf rleq_wf int-to-real_wf rdiv_wf rless-int rless_wf ss-eq_wf path-at_wf rleq-int-fractions3 less_than_wf false_wf rleq_transitivity rmul-nonneg-case1 rleq-int rmul_preserves_rleq2 rmul_wf rleq-int-fractions2 rsub_wf ss-point_wf path-ss_wf separation-space_wf rmul_comm rinv_wf2 itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf req-iff-rsub-is-0 rleq-implies-rleq rleq_functionality req_transitivity rmul-rinv real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma rmul-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis productEquality isectElimination setEquality natural_numberEquality hypothesisEquality because_Cache independent_isectElimination inrFormation productElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed lambdaEquality lambdaFormation setElimination rename dependent_set_memberEquality multiplyEquality promote_hyp axiomEquality equalityTransitivity equalitySymmetry approximateComputation int_eqEquality intEquality

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[f,g,h:Point(Path(X))].    (path-comp-rel(X;f;g;h)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-PM-01_20_42
Last ObjectModification: 2018_06_29-PM-05_47_44

Theory : intuitionistic!topology


Home Index