Nuprl Lemma : ss-free-homotopic_weakening

X:SeparationSpace. ∀a,b:Point(X).  ss-free-homotopic(X;a;b) supposing a ≡ b


Proof




Definitions occuring in Statement :  ss-free-homotopic: ss-free-homotopic(X;a;b) ss-eq: x ≡ y ss-point: Point(ss) separation-space: SeparationSpace uimplies: supposing a all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T ss-eq: x ≡ y not: ¬A implies:  Q false: False ss-free-homotopic: ss-free-homotopic(X;a;b) exists: x:A. B[x] and: P ∧ Q cand: c∧ B path-at: p@t guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uall: [x:A]. B[x] iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) prop:
Lemmas referenced :  ss-eq_inversion ss-eq_functionality ss-eq_weakening ss-eq_wf path-at_wf member_rccint_lemma rleq_weakening_equal int-to-real_wf rleq-int istype-false rleq_wf ss-point_wf separation-space_wf path-ss-point real_wf unit-ss_wf unit_ss_point_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality voidElimination functionIsTypeImplies inhabitedIsType rename dependent_pairFormation_alt extract_by_obid independent_functionElimination hypothesis independent_pairFormation because_Cache independent_isectElimination productElimination productIsType universeIsType isectElimination Error :memTop,  natural_numberEquality dependent_set_memberEquality_alt setIsType functionIsType applyEquality

Latex:
\mforall{}X:SeparationSpace.  \mforall{}a,b:Point(X).    ss-free-homotopic(X;a;b)  supposing  a  \mequiv{}  b



Date html generated: 2020_05_20-PM-01_20_26
Last ObjectModification: 2020_02_08-AM-11_41_37

Theory : intuitionistic!topology


Home Index