Nuprl Definition : ss-free-homotopic

ss-free-homotopic(X;a;b) ==  ∃p:Point(Path(X)). (p@r0 ≡ a ∧ p@r1 ≡ b)



Definitions occuring in Statement :  path-at: p@t path-ss: Path(X) ss-eq: x ≡ y ss-point: Point(ss) int-to-real: r(n) exists: x:A. B[x] and: P ∧ Q natural_number: $n
Definitions occuring in definition :  exists: x:A. B[x] ss-point: Point(ss) path-ss: Path(X) and: P ∧ Q ss-eq: x ≡ y path-at: p@t int-to-real: r(n) natural_number: $n
FDL editor aliases :  ss-free-homotopic

Latex:
ss-free-homotopic(X;a;b)  ==    \mexists{}p:Point(Path(X)).  (p@r0  \mequiv{}  a  \mwedge{}  p@r1  \mequiv{}  b)



Date html generated: 2020_05_20-PM-01_20_21
Last ObjectModification: 2018_07_05-PM-03_16_10

Theory : intuitionistic!topology


Home Index