Nuprl Definition : ss-free-homotopic
ss-free-homotopic(X;a;b) ==  ∃p:Point(Path(X)). (p@r0 ≡ a ∧ p@r1 ≡ b)
Definitions occuring in Statement : 
path-at: p@t
, 
path-ss: Path(X)
, 
ss-eq: x ≡ y
, 
ss-point: Point(ss)
, 
int-to-real: r(n)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions occuring in definition : 
exists: ∃x:A. B[x]
, 
ss-point: Point(ss)
, 
path-ss: Path(X)
, 
and: P ∧ Q
, 
ss-eq: x ≡ y
, 
path-at: p@t
, 
int-to-real: r(n)
, 
natural_number: $n
FDL editor aliases : 
ss-free-homotopic
Latex:
ss-free-homotopic(X;a;b)  ==    \mexists{}p:Point(Path(X)).  (p@r0  \mequiv{}  a  \mwedge{}  p@r1  \mequiv{}  b)
Date html generated:
2020_05_20-PM-01_20_21
Last ObjectModification:
2018_07_05-PM-03_16_10
Theory : intuitionistic!topology
Home
Index