Nuprl Lemma : ss-homeo_weakening

[X,Y:SeparationSpace].  ss-homeo(X;Y) supposing Y ∈ SeparationSpace


Proof




Definitions occuring in Statement :  ss-homeo: ss-homeo(X;Y) separation-space: SeparationSpace uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T ss-homeo: ss-homeo(X;Y) exists: x:A. B[x] subtype_rel: A ⊆B and: P ∧ Q prop: all: x:A. B[x] top: Top cand: c∧ B implies:  Q ss-eq: x ≡ y not: ¬A false: False so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  ss-id_wf subtype_rel-equal ss-point_wf ss-fun_wf and_wf equal_wf separation-space_wf ss_ap_id_lemma ss-eq_weakening ss-sep_wf all_wf ss-eq_wf ss-ap_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction axiomEquality hypothesis thin rename dependent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality independent_isectElimination equalitySymmetry dependent_set_memberEquality independent_pairFormation instantiate applyLambdaEquality setElimination productElimination equalityTransitivity sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache lambdaFormation independent_functionElimination lambdaEquality productEquality

Latex:
\mforall{}[X,Y:SeparationSpace].    ss-homeo(X;Y)  supposing  X  =  Y



Date html generated: 2020_05_20-PM-01_19_55
Last ObjectModification: 2018_07_04-PM-11_25_37

Theory : intuitionistic!topology


Home Index