Nuprl Lemma : ss-id_wf
∀[X:SeparationSpace]. (ss-id() ∈ Point(X ⟶ X))
Proof
Definitions occuring in Statement : 
ss-id: ss-id()
, 
ss-fun: X ⟶ Y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
ss-function: ss-function(X;Y;f)
, 
ss-id: ss-id()
, 
prop: ℙ
, 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
ss-eq_wf, 
ss-point_wf, 
ss-fun-point, 
ss-function_wf, 
separation-space_wf
Rules used in proof : 
lambdaFormation, 
lambdaEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
extract_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:SeparationSpace].  (ss-id()  \mmember{}  Point(X  {}\mrightarrow{}  X))
Date html generated:
2018_07_29-AM-10_11_56
Last ObjectModification:
2018_07_04-PM-00_20_46
Theory : constructive!algebra
Home
Index