Nuprl Definition : ss-homeo

ss-homeo(X;Y) ==  ∃f:Point(X ⟶ Y). ∃g:Point(Y ⟶ X). ((∀x:Point(X). g(f(x)) ≡ x) ∧ (∀y:Point(Y). f(g(y)) ≡ y))



Definitions occuring in Statement :  ss-ap: f(x) ss-fun: X ⟶ Y ss-eq: x ≡ y ss-point: Point(ss) all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q
Definitions occuring in definition :  exists: x:A. B[x] ss-fun: X ⟶ Y and: P ∧ Q all: x:A. B[x] ss-point: Point(ss) ss-eq: x ≡ y ss-ap: f(x)
FDL editor aliases :  ss-homeo

Latex:
ss-homeo(X;Y)  ==
    \mexists{}f:Point(X  {}\mrightarrow{}  Y).  \mexists{}g:Point(Y  {}\mrightarrow{}  X).  ((\mforall{}x:Point(X).  g(f(x))  \mequiv{}  x)  \mwedge{}  (\mforall{}y:Point(Y).  f(g(y))  \mequiv{}  y))



Date html generated: 2020_05_20-PM-01_19_52
Last ObjectModification: 2018_07_04-PM-00_13_57

Theory : intuitionistic!topology


Home Index