Nuprl Lemma : ss-basic-and_wf

[X:SeparationSpace]. ∀[u,v:ss-basic(X)].  (ss-basic-and(u;v) ∈ ss-basic(X))


Proof




Definitions occuring in Statement :  ss-basic-and: ss-basic-and(u;v) ss-basic: ss-basic(X) separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-basic-and: ss-basic-and(u;v) ss-basic: ss-basic(X) subtype_rel: A ⊆B
Lemmas referenced :  append_wf ss-point_wf ss-fun_wf real-ss_wf real_wf subtype_rel_self ss-basic_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[u,v:ss-basic(X)].    (ss-basic-and(u;v)  \mmember{}  ss-basic(X))



Date html generated: 2020_05_20-PM-01_22_17
Last ObjectModification: 2020_02_08-AM-11_38_57

Theory : intuitionistic!topology


Home Index