Nuprl Lemma : ss-fun-fun
∀[X,Y,Z:SeparationSpace]. ss-homeo(X ⟶ Y ⟶ Z;X × Y ⟶ Z)
Proof
Definitions occuring in Statement :
ss-homeo: ss-homeo(X;Y)
,
ss-fun: X ⟶ Y
,
prod-ss: ss1 × ss2
,
separation-space: SeparationSpace
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
top: Top
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
ss-function: ss-function(X;Y;f)
,
ss-eq: x ≡ y
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
not: ¬A
,
false: False
,
pi1: fst(t)
,
pi2: snd(t)
,
or: P ∨ Q
,
ss-point: Point(ss)
,
record-select: r.x
,
ss-fun: X ⟶ Y
,
set-ss: {x:ss | P[x]}
,
mk-ss: Point=P #=Sep cotrans=C
,
record-update: r[x := v]
,
ifthenelse: if b then t else f fi
,
eq_atom: x =a y
,
bfalse: ff
,
btrue: tt
,
fun-ss: A ⟶ ss
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
guard: {T}
,
ss-ap: f(x)
,
sq_stable: SqStable(P)
,
squash: ↓T
,
exists: ∃x:A. B[x]
,
prod-ss: ss1 × ss2
,
rev_uimplies: rev_uimplies(P;Q)
,
ss-homeo: ss-homeo(X;Y)
,
cand: A c∧ B
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
separation-space_wf,
prod-ss-point,
pi1_wf_top,
ss-point_wf,
ss-function_wf,
pi2_wf,
prod-ss-sep,
ss-sep_wf,
ss-fun-eq,
subtype_rel_self,
ss-fun_wf,
set_wf,
sq_stable__ss-eq,
equal_wf,
ss-eq_transitivity,
not_wf,
or_wf,
prod-ss_wf,
exists_wf,
ss-fun-point,
ss-fun-sep,
ss-eq_weakening,
ss-eq_wf,
ss-ap_wf,
all_wf,
eta_conv,
squash_wf,
true_wf,
pair_eta_rw,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
introduction,
extract_by_obid,
hypothesis,
isect_memberEquality,
voidElimination,
voidEquality,
dependent_set_memberEquality,
lambdaEquality,
sqequalRule,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
applyEquality,
setElimination,
rename,
hypothesisEquality,
productElimination,
independent_pairEquality,
setEquality,
functionEquality,
productEquality,
lambdaFormation,
dependent_functionElimination,
independent_functionElimination,
inlFormation,
independent_isectElimination,
inrFormation,
imageMemberEquality,
baseClosed,
imageElimination,
equalityTransitivity,
equalitySymmetry,
functionExtensionality,
dependent_pairFormation,
unionElimination,
independent_pairFormation,
hyp_replacement,
applyLambdaEquality,
universeEquality,
natural_numberEquality,
instantiate
Latex:
\mforall{}[X,Y,Z:SeparationSpace]. ss-homeo(X {}\mrightarrow{} Y {}\mrightarrow{} Z;X \mtimes{} Y {}\mrightarrow{} Z)
Date html generated:
2020_05_20-PM-01_20_02
Last ObjectModification:
2018_07_07-AM-01_55_27
Theory : intuitionistic!topology
Home
Index