Nuprl Lemma : ss-fun-fun

[X,Y,Z:SeparationSpace].  ss-homeo(X ⟶ Y ⟶ Z;X × Y ⟶ Z)


Proof




Definitions occuring in Statement :  ss-homeo: ss-homeo(X;Y) ss-fun: X ⟶ Y prod-ss: ss1 × ss2 separation-space: SeparationSpace uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] ss-function: ss-function(X;Y;f) ss-eq: x ≡ y all: x:A. B[x] implies:  Q not: ¬A false: False pi1: fst(t) pi2: snd(t) or: P ∨ Q ss-point: Point(ss) record-select: r.x ss-fun: X ⟶ Y set-ss: {x:ss P[x]} mk-ss: Point=P #=Sep cotrans=C record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt fun-ss: A ⟶ ss uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T} ss-ap: f(x) sq_stable: SqStable(P) squash: T exists: x:A. B[x] prod-ss: ss1 × ss2 rev_uimplies: rev_uimplies(P;Q) ss-homeo: ss-homeo(X;Y) cand: c∧ B true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  separation-space_wf prod-ss-point pi1_wf_top ss-point_wf ss-function_wf pi2_wf prod-ss-sep ss-sep_wf ss-fun-eq subtype_rel_self ss-fun_wf set_wf sq_stable__ss-eq equal_wf ss-eq_transitivity not_wf or_wf prod-ss_wf exists_wf ss-fun-point ss-fun-sep ss-eq_weakening ss-eq_wf ss-ap_wf all_wf eta_conv squash_wf true_wf pair_eta_rw iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid hypothesis isect_memberEquality voidElimination voidEquality dependent_set_memberEquality lambdaEquality sqequalRule sqequalHypSubstitution isectElimination thin because_Cache applyEquality setElimination rename hypothesisEquality productElimination independent_pairEquality setEquality functionEquality productEquality lambdaFormation dependent_functionElimination independent_functionElimination inlFormation independent_isectElimination inrFormation imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry functionExtensionality dependent_pairFormation unionElimination independent_pairFormation hyp_replacement applyLambdaEquality universeEquality natural_numberEquality instantiate

Latex:
\mforall{}[X,Y,Z:SeparationSpace].    ss-homeo(X  {}\mrightarrow{}  Y  {}\mrightarrow{}  Z;X  \mtimes{}  Y  {}\mrightarrow{}  Z)



Date html generated: 2020_05_20-PM-01_20_02
Last ObjectModification: 2018_07_07-AM-01_55_27

Theory : intuitionistic!topology


Home Index