Nuprl Lemma : pi1_wf_top

[T:Type]. ∀[p:T × Top].  (fst(p) ∈ T)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top pi1: fst(t) member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  pi1_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry productEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  \mtimes{}  Top].    (fst(p)  \mmember{}  T)



Date html generated: 2016_05_15-PM-03_24_18
Last ObjectModification: 2015_12_27-PM-01_05_54

Theory : general


Home Index