Nuprl Lemma : prod-ss-sep
∀[ss1,ss2,x,y:Top].  (x # y ~ fst(x) # fst(y) ∨ snd(x) # snd(y))
Proof
Definitions occuring in Statement : 
prod-ss: ss1 × ss2
, 
ss-sep: x # y
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
or: P ∨ Q
, 
sqequal: s ~ t
Definitions unfolded in proof : 
or: P ∨ Q
, 
btrue: tt
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-ss: Point=P #=Sep symm=Sym cotrans=C
, 
prod-ss: ss1 × ss2
, 
record-select: r.x
, 
ss-sep: x # y
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalAxiom, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[ss1,ss2,x,y:Top].    (x  \#  y  \msim{}  fst(x)  \#  fst(y)  \mvee{}  snd(x)  \#  snd(y))
Date html generated:
2018_07_29-AM-10_11_09
Last ObjectModification:
2018_07_03-AM-10_35_27
Theory : constructive!algebra
Home
Index