Nuprl Lemma : prod-ss-sep

[ss1,ss2,x,y:Top].  (x fst(x) fst(y) ∨ snd(x) snd(y))


Proof




Definitions occuring in Statement :  prod-ss: ss1 × ss2 ss-sep: y uall: [x:A]. B[x] top: Top pi1: fst(t) pi2: snd(t) or: P ∨ Q sqequal: t
Definitions unfolded in proof :  or: P ∨ Q btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-ss: Point=P #=Sep symm=Sym cotrans=C prod-ss: ss1 × ss2 record-select: r.x ss-sep: y member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution extract_by_obid sqequalAxiom hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss1,ss2,x,y:Top].    (x  \#  y  \msim{}  fst(x)  \#  fst(y)  \mvee{}  snd(x)  \#  snd(y))



Date html generated: 2018_07_29-AM-10_11_09
Last ObjectModification: 2018_07_03-AM-10_35_27

Theory : constructive!algebra


Home Index