Nuprl Lemma : prod-ss_wf
∀[ss1,ss2:SeparationSpace].  (ss1 × ss2 ∈ SeparationSpace)
Proof
Definitions occuring in Statement : 
prod-ss: ss1 × ss2
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
separation-space: SeparationSpace
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
ss-sep: x # y
, 
ss-point: Point(ss)
, 
prod-ss: ss1 × ss2
, 
top: Top
, 
not: ¬A
, 
false: False
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
uimplies: b supposing a
Lemmas referenced : 
subtype_rel_self, 
record-select_wf, 
top_wf, 
istype-atom, 
not_wf, 
all_wf, 
or_wf, 
mk-ss_wf, 
ss-sep_wf, 
pi1_wf_top, 
istype-void, 
pi2_wf, 
ss-point_wf, 
ss-sep-irrefl, 
subtype_rel_function, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
sqequalRule, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
extract_by_obid, 
isectElimination, 
universeEquality, 
setEquality, 
functionEquality, 
cumulativity, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
applyLambdaEquality, 
setElimination, 
rename, 
inhabitedIsType, 
universeIsType, 
productEquality, 
dependent_set_memberEquality_alt, 
unionEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
lambdaFormation_alt, 
unionElimination, 
independent_functionElimination, 
unionIsType, 
functionIsType, 
functionExtensionality, 
independent_isectElimination, 
inlEquality_alt, 
inrEquality_alt, 
equalityIstype, 
dependent_functionElimination, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[ss1,ss2:SeparationSpace].    (ss1  \mtimes{}  ss2  \mmember{}  SeparationSpace)
Date html generated:
2019_10_31-AM-07_26_46
Last ObjectModification:
2019_09_19-PM-04_09_30
Theory : constructive!algebra
Home
Index