Nuprl Lemma : eta_conv

[A,B:Type]. ∀[f:A ⟶ B].  ((λx.(f x)) f ∈ (A ⟶ B))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule applyEquality hypothesisEquality hypothesis functionEquality sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    ((\mlambda{}x.(f  x))  =  f)



Date html generated: 2016_05_13-PM-04_04_32
Last ObjectModification: 2015_12_26-AM-11_05_19

Theory : fun_1


Home Index