Nuprl Lemma : sq_stable__ss-mem-basic

[X:SeparationSpace]. ∀B:ss-basic(X). ∀x:Point(X).  SqStable(x ∈ B)


Proof




Definitions occuring in Statement :  ss-mem-basic: x ∈ B ss-basic: ss-basic(X) ss-point: Point(ss) separation-space: SeparationSpace sq_stable: SqStable(P) uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] sq_stable: SqStable(P) implies:  Q ss-mem-basic: x ∈ B member: t ∈ T l_all: (∀x∈L.P[x]) ss-basic: ss-basic(X) uimplies: supposing a guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B rless: x < y sq_exists: x:A [B[x]] ss-ap: f(x) ss-point: Point(ss) record-select: r.x real-ss: mk-ss: Point=P #=Sep cotrans=C record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt real: iff: ⇐⇒ Q
Lemmas referenced :  select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma rlessw_wf subtype_rel_self rless_wf ss-ap_wf real-ss_wf equal_wf int_seg_wf length_wf ss-point_wf ss-fun_wf real_wf squash_wf ss-mem-basic_wf ss-basic_wf separation-space_wf ss-fun-point iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation introduction sqequalHypSubstitution lambdaEquality spreadEquality cut extract_by_obid isectElimination thin because_Cache independent_isectElimination hypothesisEquality hypothesis setElimination rename productElimination dependent_functionElimination unionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation imageElimination applyEquality equalityTransitivity equalitySymmetry productEquality dependent_set_memberEquality

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}B:ss-basic(X).  \mforall{}x:Point(X).    SqStable(x  \mmember{}  B)



Date html generated: 2020_05_20-PM-01_21_54
Last ObjectModification: 2018_07_06-PM-04_40_43

Theory : intuitionistic!topology


Home Index