Nuprl Lemma : rlessw_wf

x:ℝ. ∀y:{y:ℝx < y} .  (rlessw(x;y) ∈ x < y)


Proof




Definitions occuring in Statement :  rlessw: rlessw(x;y) rless: x < y real: all: x:A. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rlessw: rlessw(x;y) subtype_rel: A ⊆B nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True real: int_upper: {i...} le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a top: Top exists: x:A. B[x] guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) rev_uimplies: rev_uimplies(P;Q) rless: x < y sq_exists: x:{A| B[x]}
Lemmas referenced :  add-swap add-associates assert_wf all_wf less_than_transitivity1 assert_of_lt_int int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties le_wf subtype_rel_sets int_upper_wf le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 false_wf decidable__lt lt_int_wf less_than_wf quick-find_wf rless_wf real_wf set_wf rless-iff4
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut setElimination thin rename lemma_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis productElimination independent_functionElimination isectElimination sqequalRule lambdaEquality applyEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation introduction imageMemberEquality baseClosed addEquality unionElimination voidElimination independent_isectElimination isect_memberEquality voidEquality intEquality because_Cache dependent_pairFormation setEquality int_eqEquality computeAll

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  <  y\}  .    (rlessw(x;y)  \mmember{}  x  <  y)



Date html generated: 2016_05_18-AM-07_04_19
Last ObjectModification: 2016_01_17-AM-01_50_41

Theory : reals


Home Index