Nuprl Lemma : quick-find_wf
∀[n:ℕ+]. ∀[p:{n...} ⟶ 𝔹].  quick-find(p;n) ∈ {m:{n...}| ↑(p m)}  supposing ∃N:{n...}. ∀m:{N...}. (↑(p m))
Proof
Definitions occuring in Statement : 
quick-find: quick-find(p;n), 
int_upper: {i...}, 
nat_plus: ℕ+, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
prop: ℙ, 
nat_plus: ℕ+, 
so_lambda: λ2x.t[x], 
int_upper: {i...}, 
subtype_rel: A ⊆r B, 
guard: {T}, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
so_apply: x[s], 
nat: ℕ, 
ge: i ≥ j , 
quick-find: quick-find(p;n), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
has-value: (a)↓
Lemmas referenced : 
exists_wf, 
int_upper_wf, 
all_wf, 
assert_wf, 
int_upper_subtype_int_upper, 
int_upper_properties, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
bool_wf, 
nat_plus_wf, 
nat_properties, 
itermConstant_wf, 
intformless_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
ge_wf, 
less_than_wf, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
nat_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
value-type-has-value, 
int-value-type, 
itermMultiply_wf, 
int_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
independent_isectElimination, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionEquality, 
lambdaFormation, 
intWeakElimination, 
independent_functionElimination, 
addEquality, 
dependent_set_memberEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
callbyvalueReduce, 
multiplyEquality
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[p:\{n...\}  {}\mrightarrow{}  \mBbbB{}].    quick-find(p;n)  \mmember{}  \{m:\{n...\}|  \muparrow{}(p  m)\}    supposing  \mexists{}N:\{n...\}.  \mforall{}m:\{N...\}.  (\muparrow{}\000C(p  m))
Date html generated:
2017_10_01-AM-09_15_24
Last ObjectModification:
2017_07_26-PM-04_50_09
Theory : general
Home
Index