Nuprl Lemma : quick-find_wf

[n:ℕ+]. ∀[p:{n...} ⟶ 𝔹].  quick-find(p;n) ∈ {m:{n...}| ↑(p m)}  supposing ∃N:{n...}. ∀m:{N...}. (↑(p m))


Proof




Definitions occuring in Statement :  quick-find: quick-find(p;n) int_upper: {i...} nat_plus: + assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] prop: nat_plus: + so_lambda: λ2x.t[x] int_upper: {i...} subtype_rel: A ⊆B guard: {T} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q so_apply: x[s] nat: ge: i ≥  quick-find: quick-find(p;n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b has-value: (a)↓
Lemmas referenced :  exists_wf int_upper_wf all_wf assert_wf int_upper_subtype_int_upper int_upper_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf bool_wf nat_plus_wf nat_properties itermConstant_wf intformless_wf int_term_value_constant_lemma int_formula_prop_less_lemma ge_wf less_than_wf le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma nat_wf itermAdd_wf int_term_value_add_lemma eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot value-type-has-value int-value-type itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination setElimination rename because_Cache lambdaEquality applyEquality functionExtensionality hypothesisEquality independent_isectElimination applyLambdaEquality dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionEquality lambdaFormation intWeakElimination independent_functionElimination addEquality dependent_set_memberEquality equalityElimination promote_hyp instantiate cumulativity callbyvalueReduce multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[p:\{n...\}  {}\mrightarrow{}  \mBbbB{}].    quick-find(p;n)  \mmember{}  \{m:\{n...\}|  \muparrow{}(p  m)\}    supposing  \mexists{}N:\{n...\}.  \mforall{}m:\{N...\}.  (\muparrow{}\000C(p  m))



Date html generated: 2017_10_01-AM-09_15_24
Last ObjectModification: 2017_07_26-PM-04_50_09

Theory : general


Home Index