Nuprl Lemma : ss-mem-whole
∀X:SeparationSpace. ∀x:Point(X).  uiff(x ∈ ss-whole(X);True)
Proof
Definitions occuring in Statement : 
ss-whole: ss-whole(X)
, 
ss-mem-open: x ∈ O
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
true: True
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
ss-whole: ss-whole(X)
, 
ss-mem-open: x ∈ O
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
true: True
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
exists_wf, 
ss-basic_wf, 
equal-wf-T-base, 
ss-mem-basic_wf, 
ss-basic-whole_wf, 
ss-mem-basic-whole, 
true_wf, 
ss-point_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
natural_numberEquality, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
baseClosed, 
rename, 
dependent_pairFormation, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}X:SeparationSpace.  \mforall{}x:Point(X).    uiff(x  \mmember{}  ss-whole(X);True)
Date html generated:
2020_05_20-PM-01_22_30
Last ObjectModification:
2018_07_06-PM-02_24_08
Theory : intuitionistic!topology
Home
Index