Nuprl Lemma : ss-mem-basic-whole

X:SeparationSpace. ∀x:Point(X).  uiff(x ∈ ss-basic-whole();True)


Proof




Definitions occuring in Statement :  ss-basic-whole: ss-basic-whole() ss-mem-basic: x ∈ B ss-point: Point(ss) separation-space: SeparationSpace uiff: uiff(P;Q) all: x:A. B[x] true: True
Definitions unfolded in proof :  all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T true: True prop: uall: [x:A]. B[x] ss-basic-whole: ss-basic-whole() ss-mem-basic: x ∈ B l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} select: L[n] cons: [a b] ss-const: ss-const(c) ss-ap: f(x) iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B false: False not: ¬A lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  ss-mem-basic_wf ss-basic-whole_wf length_of_cons_lemma length_of_nil_lemma decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties rless-int int_seg_subtype false_wf int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf true_wf ss-point_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation isect_memberFormation introduction cut natural_numberEquality sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality rename dependent_functionElimination isect_memberEquality voidElimination voidEquality setElimination unionElimination instantiate cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination productElimination imageMemberEquality baseClosed hypothesis_subsumption addEquality approximateComputation dependent_pairFormation lambdaEquality int_eqEquality

Latex:
\mforall{}X:SeparationSpace.  \mforall{}x:Point(X).    uiff(x  \mmember{}  ss-basic-whole();True)



Date html generated: 2020_05_20-PM-01_22_24
Last ObjectModification: 2018_07_06-PM-02_22_13

Theory : intuitionistic!topology


Home Index