Nuprl Lemma : int_seg_cases

[m,n:ℤ]. ∀[x:{m..n-}].  x ∈ {m 1..n-supposing ¬(x m ∈ ℤ)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True subtract: m
Lemmas referenced :  decidable__le false_wf not-le-2 not-equal-2 add_functionality_wrt_le add-associates add-commutes le-add-cancel condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top zero-add le-add-cancel2 and_wf le_wf less_than_wf not_wf equal_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesisEquality productElimination independent_pairFormation hypothesis lemma_by_obid dependent_functionElimination addEquality natural_numberEquality unionElimination lambdaFormation voidElimination independent_functionElimination independent_isectElimination isectElimination sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[m,n:\mBbbZ{}].  \mforall{}[x:\{m..n\msupminus{}\}].    x  \mmember{}  \{m  +  1..n\msupminus{}\}  supposing  \mneg{}(x  =  m)



Date html generated: 2016_05_13-PM-03_32_53
Last ObjectModification: 2015_12_26-AM-09_45_27

Theory : arithmetic


Home Index