Nuprl Lemma : path-comp-prod

[A,B:SeparationSpace].  (path-comp-property(A)  path-comp-property(B)  path-comp-property(A × B))


Proof




Definitions occuring in Statement :  path-comp-property: path-comp-property(X) prod-ss: ss1 × ss2 separation-space: SeparationSpace uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q path-comp-property: path-comp-property(X) all: x:A. B[x] member: t ∈ T top: Top and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: uimplies: supposing a path-at: p@t so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) guard: {T} pi2: snd(t) pi1: fst(t) ss-eq: x ≡ y or: P ∨ Q exists: x:A. B[x] ss-point: Point(ss) record-select: r.x prod-ss: ss1 × ss2 mk-ss: Point=P #=Sep cotrans=C record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt rev_uimplies: rev_uimplies(P;Q) path-comp-rel: path-comp-rel(X;f;g;h) rneq: x ≠ y less_than: a < b squash: T true: True subtype_rel: A ⊆B i-member: r ∈ I rccint: [l, u] nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  ss-eq_wf prod-ss_wf path-at_wf member_rccint_lemma rleq-int false_wf rleq_weakening_equal int-to-real_wf rleq_wf ss-point_wf path-ss_wf path-comp-property_wf separation-space_wf path-ss-point prod-ss-point pi1_wf_top equal_wf real_wf unit-ss_wf unit_ss_point_lemma set_wf all_wf pi2_wf prod-ss-eq top_wf prod-ss-sep ss-sep_wf path-at_functionality2 path-comp-rel_wf rdiv_wf rless-int rless_wf subtype_rel_sets i-member_wf rccint_wf rleq-int-fractions3 less_than_wf rleq_transitivity rneq-int full-omega-unsat intformeq_wf itermConstant_wf int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf rmul_wf rmul-nonneg-case1 rmul_preserves_rleq2 rmul_comm rinv_wf2 itermSubtract_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 rleq_functionality req_transitivity rmul-rinv real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma rsub_wf rleq-implies-rleq rmul-int rleq-int-fractions2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality productElimination independent_functionElimination independent_pairFormation because_Cache independent_isectElimination dependent_set_memberEquality productEquality setElimination rename lambdaEquality applyEquality independent_pairEquality equalityTransitivity equalitySymmetry setEquality functionEquality inlFormation inrFormation dependent_pairFormation imageMemberEquality baseClosed multiplyEquality approximateComputation intEquality promote_hyp int_eqEquality

Latex:
\mforall{}[A,B:SeparationSpace].
    (path-comp-property(A)  {}\mRightarrow{}  path-comp-property(B)  {}\mRightarrow{}  path-comp-property(A  \mtimes{}  B))



Date html generated: 2020_05_20-PM-01_21_05
Last ObjectModification: 2018_07_04-AM-11_34_50

Theory : intuitionistic!topology


Home Index