Nuprl Lemma : rneq-int

n,m:ℤ.  (r(n) ≠ r(m) ⇐⇒ ¬(n m ∈ ℤ))


Proof




Definitions occuring in Statement :  rneq: x ≠ y int-to-real: r(n) all: x:A. B[x] iff: ⇐⇒ Q not: ¬A int: equal: t ∈ T
Definitions unfolded in proof :  rneq: x ≠ y all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: rev_implies:  Q decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  iff_wf all_wf int-to-real_wf rless_wf rless-int not_wf int_formula_prop_not_lemma intformnot_wf decidable__lt decidable__or less_than_wf or_wf equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_formula_prop_or_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf intformor_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lambdaFormation independent_pairFormation thin lemma_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesis independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination because_Cache unionElimination addLevel allFunctionality productElimination impliesFunctionality orFunctionality orLevelFunctionality

Latex:
\mforall{}n,m:\mBbbZ{}.    (r(n)  \mneq{}  r(m)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(n  =  m))



Date html generated: 2016_05_18-AM-07_10_27
Last ObjectModification: 2016_01_17-AM-01_52_03

Theory : reals


Home Index