Nuprl Lemma : rneq-int
∀n,m:ℤ.  (r(n) ≠ r(m) 
⇐⇒ ¬(n = m ∈ ℤ))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rneq: x ≠ y
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
iff_wf, 
all_wf, 
int-to-real_wf, 
rless_wf, 
rless-int, 
not_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
decidable__or, 
less_than_wf, 
or_wf, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_or_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
intformor_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lambdaFormation, 
independent_pairFormation, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
hypothesisEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
because_Cache, 
unionElimination, 
addLevel, 
allFunctionality, 
productElimination, 
impliesFunctionality, 
orFunctionality, 
orLevelFunctionality
Latex:
\mforall{}n,m:\mBbbZ{}.    (r(n)  \mneq{}  r(m)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(n  =  m))
Date html generated:
2016_05_18-AM-07_10_27
Last ObjectModification:
2016_01_17-AM-01_52_03
Theory : reals
Home
Index