Nuprl Lemma : path-at_functionality2

[X:SeparationSpace]. ∀[p:Point(Path(X))]. ∀[t,t':{t:ℝt ∈ [r0, r1]} ].  p@t ≡ p@t' supposing t ≡ t'


Proof




Definitions occuring in Statement :  path-at: p@t path-ss: Path(X) unit-ss: 𝕀 ss-eq: x ≡ y ss-point: Point(ss) separation-space: SeparationSpace rccint: [l, u] i-member: r ∈ I int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ss-eq: x ≡ y not: ¬A implies:  Q false: False prop: all: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ss-sep_wf path-at_wf ss-eq_wf unit-ss_wf member_rccint_lemma unit_ss_point_lemma set_wf real_wf i-member_wf rccint_wf int-to-real_wf ss-point_wf path-ss_wf separation-space_wf unit-ss-eq ss-eq_weakening ss-eq_functionality path-at_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination hypothesis isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry natural_numberEquality productElimination independent_pairFormation independent_isectElimination independent_functionElimination

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[p:Point(Path(X))].  \mforall{}[t,t':\{t:\mBbbR{}|  t  \mmember{}  [r0,  r1]\}  ].    p@t  \mequiv{}  p@t'  supposing  t  \mequiv{}  t\000C'



Date html generated: 2020_05_20-PM-01_20_19
Last ObjectModification: 2018_07_03-PM-05_15_54

Theory : intuitionistic!topology


Home Index